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Abstract. We study the magnetic excitation spectrum of the spin-1 chain with Hamiltonian H =P
i cos θSi · Si+1 + sin θ(Si · Si+1)2. We focus on the range 0 ≤ θ ≤ +π/4 where the spin chain is in

the gapped Haldane phase. The excitation spectrum and static structure factor is studied using direct
Lanczos diagonalization of small systems and density-matrix renormalization group techniques combined
with the single-mode approximation. The magnon dispersion has a minimum at k = π until a critical value
θc = 0.38 is reached at which the curvature (velocity) vanishes. Beyond this point, which is distinct from
the VBS point and the Lifshitz point, the minimum lies at an incommensurate value that goes smoothly
to k = 2π/3 when θ approaches π/4, the Lai-Sutherland point. The mode remains isolated from the other
states: there is no evidence of spinon deconfinement before the point θ = +π/4. These findings explain
recent observation of the behavior of the magnetization curve M ≈ (H −Hc)

1/4 for θ = θc.

PACS. 75.10.Jm Quantized spin models – 75.20.Hr Local moment in compounds and alloys; Kondo effect,
valence fluctuations, heavy fermions

1 Introduction

It is now well known that one-dimensional spin-S
Heisenberg antiferromagnets (AF) have qualitatively dif-
ferent properties according to whether the spin value S is
integer or half-integer [1]. The existence of a singlet-triplet
gap just above the ground state is clearly established
[2–5] by numerical techniques for the S = 1 and S = 2
cases. Our physical understanding of these phenomena is
based on the construction due to Affleck, Kennedy, Lieb
and Tasaki [6] (AKLT). These authors were able to ob-
tain explicitly the ground state of the following bilinear-
biquadratic Hamiltonian:

Haklt =
∑
i

Si · Si+1 +
1
3

(Si · Si+1)2, (1.1)

where Si are quantum S = 1 spin operators living on
a chain whose sites are indexed by i. To construct the
ground state wavefunction of the Hamiltonian (1.1), each
original S = 1 spin is written as two S=1/2 spins in a
triplet state. Then the ground state is obtained by cou-
pling into a singlet state all nearest-neighbor spins-1/2,
thus forming a crystalline pattern of valence bonds. This
state is called the valence-bond-solid state (VBS). It is in
fact the unique ground-state and excitations have a gap
which is known rigorously to be nonzero. Many results
followed from the VBS picture. For example, it implies

a e-mail: thierry@spht.saclay.cea.fr

that there are free spins 1/2 at the end of an open chain
[7]. This has been verified experimentally [8,9] by elec-
tron spin resonance on copper spins randomly introduced
in the S = 1 AF chain compound NENP. The bulk ex-
citations are easily pictured: by breaking a singlet bond
into a triplet one creates a local objet that move along the
chain. This is only an approximate eigenstate but it has
good overlap [10–13] with the first excited state which is a
triplet, the “magnon”, as predicted in the original deriva-
tion of Haldane [1].

This appealing picture is certainly correct for the
Hamiltonian (1.1) but it remains to be understood how
closely it applies to the standard Heisenberg exchange
Hamiltonian for which the biquadratic coupling in equa-
tion (1.1) is zero. Initial studies [14] proposed the gener-
alized family of models:

Hθ =
∑
i

cos θSi · Si+1 + sin θ (Si · Si+1)2. (1.2)

This family includes the familiar Heisenberg model for θ =
0 and the AKLT Hamiltonian for tan θVBS = 1/3. Since
the gap does not go to zero in the interval [0, θVBS] it is
likely that there is no phase transition and that the two
limiting Hamiltonians θ = 0 and θ = θVBS ' 0.3218 share
the same physics. It is exactly the same line of arguments
that justify the use of Laughlin wavefunctions to describe
correlated states of electrons in the Fractional Quantum
Hall Effect [15].
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However, the AKLT point has special properties: for
example the spin correlation functions have a spatial
decay which is purely exponential, contrary to the
Ornstein-Zernicke decay which is observed for the Heisen-
berg model. A study of the family of models (1.2) revealed
that the AKLT point is a disorder point [16] beyond which
short-range incommensurability appears in real space spin
correlations [17]. Hence, it is at a boundary in some sense.
The evolution of the spin excitations as a function of θ is
the subject of the present paper. For θ = π/4 it is known
from the Bethe Ansatz [18,19] that the spectrum is gapless
and that excitations form a continuum as in the case of the
spin-1/2 AF chain. Near the Heisenberg point, it is known
that there is an isolated branch of triplet excitations [20]
that enter in a two-particle continuum for a wavevector
q ≈ 0.3π. In the neighborhood of q = π the continuum
is well above the isolated mode. This holds also for the
AKLT Hamiltonian, as shown by Lanczos diagonalization
[21]. Since there is no phase transition with zero gap be-
tween θ = 0 and the Lai-Sutherland point θ = +π/4,
the common belief is that things evolve smoothly. This
rather vague statement deserves however more scrutiny in
view of the change of the spin correlations at the AKLT
point [17]. An interesting issue is the fate of the Hal-
dane triplet mode that should ultimately disappear in the
spinon continuum for θ = π/4. It has been speculated re-
cently [22] that beyond the AKLT point θ > θVBS the Hal-
dane mode disappears and is replaced instead by a gapped
spinon continuum which becomes gapless only right at the
Lai-Sutherland point. However this intriguing picture is
based only on variational wavefunctions whose relevance
to the problem is at least unclear. It has also been ob-
served [23] that the magnetization curve M(H) displays
intriguing behavior for some value of θ. Some recent work
[24] has undertaken the study of dynamical properties be-
tween the Heisenberg and VBS points.

In this paper, we investigate the excitation spectrum
for a range of values of θ in the Haldane phase. Our main
finding is that the Haldane mode remains well-defined and
isolated from other states: there is no deconfinement of
spinons. The minimum wavevector of the dispersion rela-
tion E(k) stays at the zone boundary k = π till a critical
value θc ≈ 0.38 which is between the θVBS and Lifshitz
points [25] θL and clearly different from these two values.
Beyond θc the dispersion has a minimum at some incom-
mensurate wavevector that evolves smoothly towards 2π/3
when θ → π/4. At θc, the dispersion curve has a quartic
minimum and we show that this implies a critical behavior
≈ (H −Hc)1/4 for the magnetization M(H).

In Section 2, we describe our results for the dispersion
of the Haldane triplet obtained from Lanczos exact diag-
onalizations. In Section 3, the single-mode approximation
is applied to DMRG calculations of the static structure
factor in order to estimate the lower edge of the excita-
tion spectrum. We discuss the physical properties of the
Haldane phase and the relationship with the nonlinear
sigma model in Section 4. We discuss also the shape of
the magnetization curve in Section 4. Finally our conclu-
sions are presented in Section 5
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Fig. 1. Excitation spectrum of the N = 16 chain for the
Heisenberg S = 1 AF chain, θ = 0. Energies are relative to
the ground state. The number denote the total spin value of
each state. We have introduced small horizontal shifts to avoid
superposition of symbols. The energies are given as a function
of the chain momentum k (only the first 10 levels are calcu-
lated for each momentum and Sz). Note the prominent triplet
branch that starts from the Haldane gap at the zone boundary
at k = π. The solid curve is the fit by equation (2.3).

2 Lanczos results

At the Heisenberg point θ = 0, the excitation spectrum
of the Hamiltonian (1.2) has been studied in considerable
detail. We first use the Lanczos diagonalization method
to study the interval 0 ≤ θ < +π/4. We use conserva-
tion of the z-component of the total spin and compute
the eigenenergies of the first 10 low-lying states. We use
also translation symmetry to work in sectors with fixed
lattice momentum k. To keep the Hamiltonian real even
when the momentum k is not 0 or π, we use a non-trivial
change of basis due to Takahashi [26]. This requires up to
350 Lanczos iterations which is considerably more expen-
sive than just getting the ground state of each Sz sector.
To prevent runaway of the Lanczos process we are forced
to re-orthogonalize with respect to the previous basis vec-
tor at each step. This bottleneck leads to a limit on the
length of the chain which is 16 sites. This is a difficulty
which does not appear when computing only the ground
state. Our results for θ = 0 are shown in Figure 1. Above
the ground state, there is a well-defined triplet branch
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Fig. 2. Excitation spectrum of the N = 16 chain for θ =
θVBS. The physics is qualitatively similar to θ = 0, there is
evidence for a nonzero curvature of the dispersion at k = π of
the magnon and there is no spinon continuum.

which is the prominent Haldane mode, the “magnon”.
The minimum of the dispersion is at the zone boundary
k = π. This is the Haldane gap. The mode enters a contin-
uum [20] at k ≈ 0.3π. At k = 0 the continuum is the bot-
tom of the spectrum and starts at twice the Haldane gap
(approximately for N=16 sites on our figure but checked
with excellent precision).

There is a nonzero curvature of the dispersion E(k) at
k = π. We model the bottom of the dispersion relation by
a relativistic formula as suggested by the nonlinear sigma
model:

E(k) =
√
∆2 + v2(k − k0)2. (2.1)

Here k0 is wavevector of the minimum, ∆ is the gap and
v is the velocity. Close to the minimum we have:

E(k) ≈ ∆+
v2

2∆
(k − k0)2. (2.2)

The second derivative of the dispersion is thus simply re-
lated to the velocity that occurs in the nonlinear sigma
model description.

When we increase θ, there is a range of values for which
nothing qualitatively new happens. This range includes
the VBS point θ = θVBS ' 0.3218. The spectrum at this
point is displayed in Figure 2. It shows the same features as
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Fig. 3. The second derivative c of the dispersion relation com-
puted with the triplet state at k = π and its two closest
neighbors along the magnon branch. Data are for several sizes
N = 8, 10, 12, 14, 16. It is nonzero at the VBS point but van-
ishes for θc = 0.38. Note that finite-size effects are extremely
small in this range. We find cVBS = 0.9778(1).

that of Figure 1. Notably there is still a nonzero curvature
at k = π of the magnon branch. If we consider the energy
of the state at k0 = π and the two closest states on the
magnon branch with k = π − 2π/N and k = π − 4π/N ,
we can fit by a fourth-order polynomial:

E(k) = E(k0) +
c

2
(k − k0)2 +

d

24
(k − k0)4 (2.3)

and hence obtain an estimate of the velocity. Close to the
VBS point, the values of c as a function of the chain length
are given in Figure 3. At this point it is important to
note that the finite-size effects are in fact extraordinarily
small. This is related to the fact that the spin-spin corre-
lations in the VBS wavefunction are of very short range
ξ = 1/ log 3 ≈ 0.9. So our estimate for c is very precise:
from N = 4 to N = 16 sites the dependence is very weak.
We can exclude a vanishing velocity at this point. Indeed
we find c = 0.9778(1). Similarly the Haldane mode stays
isolated from the continuum which lies much above: these
states display extremely fast convergence to the thermo-
dynamic limit.

We observe in Figure 3 that the velocity vanishes
at a point θc = 0.38 which is between the VBS point
θVBS = 0.32 and the Lifshitz point θL = 0.414. There
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Fig. 4. Same spectrum as Figure 1 but for θ = θc. At this point
the dispersion of the triplet mode has a fourth-order minimum
at the zone boundary.

the minimum of the dispersion relation becomes of fourth
order but still there are no states coming from above to
fill the gap between the Haldane mode and the contin-
uum. This case is shown in Figure 4. Once again we are
in a regime of very weak finite-size effects: measurements
of the spin correlation in this regime [17] are in agreement
with the present findings.

We can also obtain an estimate of the fourth derivative
d of the dispersion relation E(k) through equation (2.3). It
is given in the neighborhood of the VBS point in Figure 5.
The size dependence is minimal again at θVBS. Note that
right at θc the fourth derivative d clearly extrapolate to
a positive non-zero value: this fact will be important to
explain the shape of the magnetization curve in Section 4.

Beyond the special point θc, the minimum of the dis-
persion no longer lies at k = π but is at a wavevector
which is in general incommensurate and dependent upon
θ. The curvature of the dispersion is now negative at the
zone boundary: see Figure 3. A typical case is shown in
Figure 6 for θ = 0.52. These results show no evidence for
deconfined excitations replacing the Haldane triplet mode.
This is at variance with the two-dimensional quantum an-
tiferromagnets where large-N studies [27] have suggested
that incommensurability is related to deconfined bosonic
spinons. These spinons are S = 1/2 elementary excita-
tions that would lead to a continuum of states as in the
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Fig. 5. The fourth-order derivative d of the dispersion relation
evaluated as in Figure (3) with the two closest neighbors. It is
nonzero at θc.

S = 1/2 AF chain. In the VBS picture they are created
in pairs when a singlet VBS bond is broken into a triplet.
When such object move far apart, there is necessarily a
string of totally dimerized pairs of spins between them and
this is suggestive of confinement into the triplet mode.
Our results show that these objects remain confined all
the way to the trimerized Lai-Sutherland point. Another
possibility for deconfined excitations was proposed by
Yamamoto [22]. He constructed trial wavefunctions from a
set of states with two broken bonds in a VBS background
and obtained variational evidence for liberation of these
entities beyond the VBS point. If this was the case, the
corresponding states should be filling the empty interval
above the Haldane triplet mode. We see no evidence for
this.

When θ→ π/4 the gap closes and the overall picture is
consistent with the apparition of the tripled period 2π/3.
However in this regime finite-size effects become impor-
tant as the phase transition is approached. It is known that
right at the Lai-Sutherland point, the phase transition is
described by a a SU(3) generalization of the Kosterlitz-
Thouless phase transition [28] For θ > π/4, the system
enters a gapless phase. In the regime −π/4 < θ < π/4, it
is extremely likely that the gap vanishes only at θ = ±π/4
[17,12]. However, we cannot exclude from our numeri-
cal study that spinon deconfinement appears before that
point but this would involve yet another phase transition
for which there is at the present time no evidence.
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Fig. 6. Same spectrum as Figure 1 for θ = 0.52. This point lies
deep in the incommensurate regime. The minimum wavevector
is now inside the Brillouin zone and the magnon mode remains
isolated: there is no evidence for spinon deconfinement.

3 Single-mode approximation

To confirm the results obtained in the previous section,
we now turn to the single-mode approximation of the
dispersion relation. This approximation was introduced
originally by Bijl and Feynman to determine the phonon-
roton dispersion in superfluid 4He. It has also success-
fully been applied to Haldane gap systems using the VBS
wave-function [11] and to the isotropic Heisenberg point
using DMRG techniques [29]. We refer the reader to ref-
erences [11,29] for further details of the single-mode ap-
proximation and briefly outline the derivation below.

The dynamical structure factor of the spin system is
defined by:

S(q, ω) =
∫ +∞

−∞
dteiωt

∑
n

eiqn〈Sαn (t)Sα0 〉. (3.1)

In this equation, the α index need not be specified since
we consider only isotropic systems. The equal-time corre-
lation function is:

S(q) = 〈Sαq Sα−q〉 =
1

2π

∫ +∞

−∞
dωS(q, ω), (3.2)

where Sαq = 1/
√
L
∑
n eiqnSαn . Imagine that we know the

ground state |0〉. Then a guess for the first excited state

may be simply Sαq |0〉. This is a triplet with lattice mo-
mentum q. This will be close to an exact excited state if
the dynamical structure factor S(q, ω) is strongly peaked
at the energy ωSMA(q) of the state Sαq |0〉. This energy is
given by the formula:

ωSMA(q) =
1

2S(q)
〈
[
Sα−q,

[
Hθ, Sαq

]]
〉, (3.3)

whereHθ is the Hamiltonian. The advantage of the single-
mode approximation is that it does not require a full
dynamical study of the system: in equation (3.3), it is
possible to evaluate all quantities once we have a good ap-
proximation for the ground state. This is feasible by the
DMRG algorithm which is extremely efficient in quantum
spin chains. The commutators in equation (3.3) can be
evaluated straightforwardly with the result:

ωSMA(q) = (cos q − 1)c(θ)/S(q), (3.4)

where c(θ) is some constant given by:

cx(θ) = cos θ
[
〈Syi S

y
i+1〉+ 〈Szi Szi+1〉

]
+ sin θ[2〈(Si · Si+1)2〉
− 〈(Si · Si+1)Sxi S

x
i+1 + Sxi S

x
i+1(Si · Si+1)〉

+ 2〈Syi Szi Szi+1S
y
i+1 + Szi S

y
i S

y
i+1S

z
i+1〉

− 2〈(Szi )2(Syi+1)2 + (Syi )2(Szi+1)2〉]. (3.5)

We find that c(θ) only varies slowly with θ and it is
now obvious that at least within the single-mode ap-
proximation the minimum in ω(q) will start to move
away from π before the Lifshitz point is reached (at the
Lifshitz point the maximum of S(q) moves away from
π). At the VBS point the ground state |VBS〉 is simple
enough that ωSMA(k) can be calculated exactly [11]. One
has ωSMA(k) =

√
5

9
√

2
(5 + 3 cosk). Hence, we see explicitly

that at the VBS point the second derivative and hence the
velocity is non-zero within the SMA approximation. The
value of the second derivative cSMA = 1.054 is very close
to our Lanczos estimate of Section 2 c = 0.9778.

Using the above expressions, c(θ) as well as the correla-
tion functions 〈Szi Szi+r〉 has been evaluated in the ground-
state for chain lengths up to L = 100 spins keepingm = 81
states in the reduced density matrices. Open boundary
conditions were used. The correlation function was calcu-
lated between a spin in the middle of the chain and a spin
a distance r towards the open boundary. Due to the ex-
ponential decay of the correlation functions this is largely
sufficient to calculate the correlation functions to the nec-
essary precision. We checked that the effects of the open
boundary is negligible. Fourier transforming this equal
time correlation function the structure factor, Szz(q), is
obtained.

We present results in the interval between θc as de-
fined in Section 2 and θL. In Figure 7, the structure fac-
tor is plotted in the neighborhood of the zone boundary
q = π. It becomes very flat, i.e. of fourth order at the Lif-
shitz point θL ' 0.414. However, the minimum in ωSMA(q)
starts to move away from π for θ ∈ [0.38, 0.39]: this can
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Fig. 7. The static structure factor from a DMRG calculation.
It is drawn only near the zone boundary for several θ values in
the interval θc, θL.

be seen in Figure 8 where this quantity is plotted close to
q = π. This is consistent with our findings from the ex-
act diagonalization results. Clearly, θc and θL are distinct,
and in fact a considerable interval occurs between these
two points.

Inherently the SMA approximation assumes that

S(k, ω) = S(k)δ(ω −E(k))

and hence neglects any incoherent background. Thus,
ωSMA(k) always over estimates the true excitations. This
is important to remember when one compares the SMA re-
sults for the gap with other numerical estimates. Roughly
the distance that the SMA value is above the true gap
measures how big the incoherent contribution to S(k, ω)
is. It works quite well around the Lifshitz point.

4 Structures within the Haldane phase
and magnetization process

From the numerical studies, both Lanczos and DMRG for
single-mode approximation, we obtain a rather intricate
structure within the Haldane phase −π/4 < θ < +π/4.
• In the interval −π/4 < θ ≤ θVBS, the dispersion re-

lation has its minimum at k = π, the spin correlations are
commensurate: 〈S0 · Sx〉 ' (−)x exp(−x/ξ)/√x. In this
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Fig. 8. The dispersion ωSMA(k) obtained from the single-mode
approximation. The minimum moves away from k = π at the
value θc which is the same as the Lanczos value 0.38(1). Ener-
gies have been divided by cos θ.

regime the O(3) non-linear sigma model is a perfectly cor-
rect description of the low-energy long-wavelength behav-
ior of the system in agreement with the original derivation
by Haldane [1].
• In the interval θVBS < θ ≤ θc, the dispersion relation

still has its minimum at k = π but now the spin correla-
tions oscillate with a period which is incommensurate [17],
This is not seen in the static structure factor S(q) which
remains peaked at q = π, a feature due to the short-range
nature of the spin order. While E(k) is still sigma model
like, this regime is not described by the sigma model which
has only commensurate spin correlations. Indeed the
nonlinear sigma model uses the Ansatz:

Si = (−)iφi + Li, (4.1)

where the fields φ and L are smooth i.e. have Fourier
modes only near k = 0. This is no longer valid even with-
out a phase transition as a function of θ.
• In the interval θc < θ ≤ θL, the dispersion has now a

minimum away from the zone boundary. In fact there are
two nonequivalent wavevectors π±Q at the minimum. The
quantity S(q) is still peaked at q = π. A possible effective
theory would be now a non-linear sigma model describing
helical order [30,31]. It would involve a 3 × 3 rotation
matrix as an order parameter to describe the short-range
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spin order. It is a phase with incommensurate short-range
spin correlations and the spinons are confined.
• In the interval θL < θ ≤ +π/4, the only difference

with the previous case is that there is a double-peak struc-
ture in S(q).

The above observations have interesting consequences
for the magnetization curve M(H). For the Heisenberg
model, its shape and essential characteristics are well un-
derstood [32,3]. When the applied uniform magnetic field
H is less than the Haldane gap, there is no net magneti-
zation: since H is coupled to the z-component of the total
spin, the Zeeman Hamiltonian commutes with the Heisen-
berg Hamiltonian and hence does not change wavefunc-
tions. So the ground state is unaffected by H. However at
a critical value Hc1 = ∆, the Haldane gap, there is a cross-
ing of levels and a magnetized state becomes the ground
state. Finally there is full saturation to a ferromagnetic
state beyond some field Hc2. Near Hc1, the critical behav-
ior is given by M(H) ' (H−Hc1)1/2. The exponent 1/2 is
directly related to the dispersion relation of the magnons
near k = π. Indeed the magnetization is given by inverting
the relation H −Hc1 = dE/dM and the function E(M)
is the same as for a system of noninteracting fermions:

E = (∆−H)M +N

∫ +kF

−kF

dk
2π

v2k2

2∆
· (4.2)

In this equation, N is the number of sites and v is the
velocity which is defined through the dispersion relation:

E(k) = ∆+
v2

2∆
(k − π)2 + c4(k − π)4 +O(k − π)6.

(4.3)

Since M = NkF/π, one has:

E(M) = M(∆−H) +
(vπ)2

6∆
M3

L2
+ d4M

5 +O(M7).

(4.4)

Near the critical field this leads to M ' (H −∆)1/2. This
depends crucially on the quadratic dispersion relation. If
now we consider the generalized Hamiltonian at θ = θc,
one has v = 0 but the fourth-order derivative is nonzero
as can be seen in Figure 5. Hence equation (4.3) should
be replaced by E(k) = ∆ + c4(k − π)4. There is no cubic
term by imposing invariance under k → 2π − k which
is parity and lattice periodicity. Now in equation (4.4),
the M4 term dominates and this leads immediately to
M ' (H −∆)1/4. Our findings explain the observation of
such a behavior by Okunishi et al. [23]. When θ > θc the
dispersion has again a quadratic minimum and the line of
arguments with v 6= 0 is again valid: M ' (H − ∆)1/2

is the correct behavior in this range. The massless phase
above Hc1 however is likely to be [33] a two-component
Luttinger liquid, contrary to the one-component Luttinger
liquid that arises for θ < θc.

5 Conclusion

We have studied the magnetic excitation spectrum of the
bilinear-biquadratic S = 1 Hamiltonian that includes the

Heisenberg point as well as the VBS point. We have shown
by Lanczos and DMRG techniques combined with the
single-mode approximation that the magnon dispersion
becomes incommensurate at a critical value θc = 0.38
which is different from all previously known points in the
phase diagram. Right at the special value θc the magnon
dispersion has a fourth-order minimum at the zone bound-
ary k = π. As a consequence the magnetization curve
M(H) near the lower critical field is drastically modified:
instead of a square-root behavior, the magnetization rises
with a power-law 1/4. This explains recent observations.

From our study it is now clear that there are hid-
den structures within the bulk of the Haldane phase. This
phase extends in the interval −π/4 < θ < +π/4 and the
gap vanishes at the two boundary points. These critical
points correspond, as is well known, to transitions towards
completely different phases. It is widely believed that ab-
sence of phase transition means that the physics evolves
smoothly, hence, that the Heisenberg point θ = 0 and the
AKLT point θ = 0.32 share the same physical properties.
It was known that spin correlations do change qualita-
tively even within the Haldane range −π/4 < θ < +π/4.
We have shown that also the dynamical properties do
change qualitatively and not only quantitatively. Curi-
ously enough the special point characterizing the change
θc is distinct from the VBS point. The bilinear-biquadratic
S = 1 chain is thus an interesting counterexample show-
ing the variety of physical phenomena that occur within
a massive phase.

Finally we have shown evidence that there is no spinon
deconfinement when we approach the SU(3) phase transi-
tion at θ = +π/4. Thus, the Haldane phase is an example
of a gapped spin liquid with incommensurate spin excita-
tions, a phenomenon that may also appear in the normal
phase of the underdoped cuprates.
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